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a b s t r a c t

A generalized censoring scheme in the survival analysis context
was introduced by the authors in Jammalamadaka and Mangalam
[S. Rao Jammalamadaka, V. Mangalam, Nonparametric estimation
formiddle censored data, J. Nonparametr. Stat. 15 (2003) 253–265].
In this article we discuss how such a censoring scheme applies to
circular data and in particular when the original data is assumed to
come from a parametric model such as the von Mises. Maximum
likelihood estimation of the parameters as well as their large-
sample properties are considered under this censoring scheme.We
also consider nonparametric estimation of the circular probability
distribution under such a general censoring scheme and useMonte
Carlo methods to investigate its effects on the estimation of the
mean direction and concentration.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Letα1, α2, . . . , αn be a set of independent and identically distributed (i.i.d.)measurements on two-
dimensional directions. Such measurements, called angular or circular data, can be represented as
points on the circumference of a circle with unit radius. They may represent wind directions, the
vanishing angles at the horizon for a group of birds, or the times of arrival at a hospital emergency
roomwhere the 24 h cycle is represented as a circle. In assigning numerical values to such directions,
one has to keep in mind the arbitrary choice of the zero direction, as well as the sense of rotation. For
definiteness, all throughout this paper, wemeasure angles in the range [0, 2π) and use anti-clockwise
direction as positive. However, the statistical measures as well as methods should be independent of
these choices.
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We consider the censoring problem where one may not be able to observe all the data points. For
instance, a bird’s vanishing angle at the horizon might be obscured by a passing cloud or a (fixed) hill
range so that one sees some actual observations αi while the others may be simply noted as falling
inside a random interval (Li, Ri). A similar thing happens when the registration counter of a hospital
emergency room is closed for a temporary period and all patients who arrive during that period
are registered as having come during that interval. We consider both parametric and nonparametric
estimation problems in this context and evaluate the loss in efficiency because of such censoring. See
for instance, Iyer et al. [1] who consider censoring in an exponential model.
In Section 1, we consider a von Mises (or Circular Normal) model for the original data. Maximum

likelihood estimation of the mean direction and concentration parameter are fairly standard and
the reader is referred to books such as Mardia and Jupp [2], or Jammalamadaka and SenGupta [3].
The last reference also includes S-Plus based software for computing these parameters. We consider
various censoring distributions that generate an interval of censoring, (Li, Ri) and if an observation
falls in this interval, then we do not observe its actual value but just note this interval. We consider
maximum likelihood estimationunder such censoring and show that in large samples, such estimators
follow a normal distribution, allowing one to find confidence intervals etc. In the following section,
we drop the parametric model assumption and provide an iterative scheme to estimate the circular
probability distribution which results in a ‘‘Self-Consistent Estimator (SCE)’’ which is also most often
the ‘‘Nonparametric Maximum Likelihood Estimator (NPMLE)’’.

Remark. The idea of middle-censoring contained here can be easily adapted to higher dimensions
say for example for the von Mises–Fisher distribution in 3-dimensions, with spherical caps replacing
the arcs discussed here(like clouds covering the earth). However it entails considerably more work,
theoretical as well as computational, as can be surmised from the results in the next few sections, and
we plan to pursue this in a future project. Even the nonparametric work needs extensions to higher
dimensions.

2. Censoring with parametric models

Formally, let α1, . . . , αn be a set of angular measurements and suppose they follow a von Mises
distribution. Recall that a randomangleA is said to followa vonMises distributionwithmeandirection
µ and concentration parameter κ , to be denoted by a vM(µ, κ), if it has the probability density
function

f (α; θ) =
1

2π I0(κ)
eκ cos(α−µ), 0 ≤ α < 2π

where θ = (µ, κ) ∈ Θ = [0, 2π)× [0,∞). Here Iν is themodified Bessel function of the first kind and
order ν (also called Bessel function of purely imaginary argument), and is given by

Iν(z) =
1
2π

∫ 2π

0
cos νtez cos tdt

=

∞∑
r=0

(z/2)ν+2r

r!Γ (ν + r + 1)
.

Our goal is to estimate θ when some of the observations are censored by intervals of the type (l, r)
where l and r forms an arc on the circumference. Denoting the observed arcs as (li, ri), the likelihood
function takes the form

Ln (α; θ) =
1

(2π I0 (κ))n
exp

[
κ

n∑
i=1

δi cos (αi − µ)

]
n∏
i=1

[∫ ri

li
exp [κ cos (t − µ)] dt

]1−δi
where δi takes the value ‘‘0’’ if the observation is censored and the value ‘‘1’’ if it is uncensored. If
the arc straddles the origin 0 = 2π so that r < 0 < l, the integral over the arc starting from l and
ending at r is interpreted, throughout this paper, as the sum of integrals from l to 2π and 0 to r . When
convenient, we indicate this arc by Al,r and its complement by Āl,r
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Thus the log-likelihood function is given by

ln (α; θ) = −n log 2π − n log I0 (κ)+ κ
n∑
i=1

δi cos (αi − µ)

+

n∑
i=1

(1− δi) log

[∫
Ali,ri

exp [κ cos (t − µ)] dt

]
. (2.1)

The θ̂ = θ̂n =
(
µ̂n, κ̂n

)
which maximizes this likelihood function, is clearly the MLE of θ.

Computational aspects of the MLE are discussed below.
Before deriving the first and second derivatives for the solution of the ML equation and

computation of the information matrix, we introduce the following notations. Let

A0 (κ) =
I1 (κ)
I0 (κ)

B0i (µ, κ) =
∫ ri

li
exp [κ cos (t − µ)] dt

B1i (µ, κ) =
∫ ri

li
sin (t − µ) exp [κ cos (t − µ)] dt

B2i (µ, κ) =
∫ ri

li
cos (t − µ) exp [κ cos (t − µ)] dt

B3i (µ, κ) =
∫ ri

li
sin2 (t − µ) exp [κ cos (t − µ)] dt

B4i (µ, κ) =
∫ ri

li
cos2 (t − µ) exp [κ cos (t − µ)] dt

B5i (µ, κ) =
∫ ri

li
sin (t − µ) cos (t − µ) exp [κ cos (t − µ)] dt.

Then it is easy to check

∂B0i
∂µ
= κB1i

∂B0i
∂κ
= B2i

∂B1i
∂µ
= κB3i − B2i

∂B1i
∂κ
= B5i

∂B2i
∂κ
= B4i.

The derivatives of the log-likelihood function are given by

∂ ln
∂µ
= κ

n∑
i=1

δi sin (αi − µ)+ κ
n∑
i=1

(1− δi)
B1i (µ, κ)
B0i (µ, κ)

(2.2)

and

∂ ln
∂κ
= −nA0 (κ)+

n∑
i=1

δi cos (αi − µ)+
n∑
i=1

(1− δi)
B2i (µ, κ)
B0i (µ, κ)

. (2.3)
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The second derivatives are given by

∂2ln
∂µ2
= −κ

n∑
i=1

δi cos (αi − µ)+ κ
n∑
i=1

(1− δi)

[
κB3i (µ, κ)− B2i (µ, κ)

B0i (µ, κ)
− κ

(
B1i (µ, κ)
B0i (µ, κ)

)2]
∂2ln
∂κ2
= −nA′0 (κ)+

n∑
i=1

(1− δi)

[
B4i (µ, κ)
B0i (µ, κ)

−

(
B2i (µ, κ)
B0i (µ, κ)

)2]
∂2ln
∂κ∂µ

=

n∑
i=1

δi sin (αi − µ)+
n∑
i=1

(1− δi)
[
B1i (µ, κ)+ B5i (µ, κ)

B0i (µ, κ)
−
B1i (µ, κ) B2i (µ, κ)

B20i (µ, κ)

]
.

Expressions (2.2) and (2.3) are equated to zero and solved numerically. By substituting these
solutions into the information matrix, one obtains the ‘‘observed information’’ matrix viz.

Î =


∂2ln
∂µ2

∂2ln
∂κ∂µ

∂2ln
∂κ∂µ

∂2ln
∂κ2


∣∣∣∣∣∣∣∣∣
θ=θ̂

.

Then, provided censoring is not too strong,
√
n
(̂
θn − θ

)
will be asymptotically normal with mean

zero and covariance Î−1 as shown in the next section.

3. Large-sample properties of the MLE

We assume that the random censoring mechanism is independent of the variable of interest and
does not involve θ. Let θ0 denote the true value of the parameter and let

p (θ, l, r) = Pθ [A ∈ (l, r)] =
∫ r

l
f (t; θ) dt.

Let

g1 (θ, l, r) = − log (2π I0 (κ))+ κ
∫
Āl,r
cos (t − µ) f (t; θ0) dt

+ p (θ0, l, r) log

[∫
Al,r
exp [κ cos (t − µ)] dt

]
(3.4)

and define a function g on the parameter space as g (θ) =
∫
g1 (θ, l, r) dFLR.

Lemma 3.1. Under Pθ0 measure,
1
n ln (α; θ)→

a.s. g (θ).

Proof. Define

Xi (θ) = − log [2π I0 (κ)]+ κδi cos (Ai − µ)+ (1− δi) log
[∫ Ri

Li
exp [κ cos (t − µ)] dt

]
. (3.5)

Then Xi’s are i.i.d. random variables with mean g (θ) under Pθ0 . So by the strong law of large numbers
1
n ln (α; θ) =

1
n

∑n
i=1 Xi→

a.s. Eθ0 [X1] = g (θ) .

Lemma 3.2. Let f1 and f2 be density functions w.r.t. a measure ν . Then∫
f1 (x) log f1 (x) dν (x) ≥

∫
f1 (x) log f2 (x) dν (x)

with equality holding if and only if f = g a.s. (ν)

For a proof see (1e.6.6) of Rao [4].
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Lemma 3.3. If l and r are two distinct arbitrary points in [0, 2π), then g1 (θ, l, r) ≤ g1 (θ0, l, r) for all
θ ∈ Θ with equality holding only when θ = θ0.

Proof. Let β be the midpoint of the arc from l to r . Let ν be a measure on [0, 2π) defined as the sum
of Lebesgue measure and the point mass at β . Define

h (t, θ) = I [t 6∈ (l, r)] f (t, θ)+ I [t = β] p (θ, l, r) .

Then
∫
h (t, θ) dν (t) = 1 for all θ ∈ Θ . Thus by Lemma 3.2, it follows that

∫
h (t, θ0) log h (t, θ) dν (t)

≤
∫
h (t, θ0) log h (t, θ0) dν (t) for all θ ∈ Θ . Now it is fairly straightforward to verify that∫

h (t, θ0) log h (t, θ) dν (t) = g1 (θ, l, r). Thus it follows that g1 (θ, l, r) ≤ g1 (θ0, l, r)
If g1 (θ1, l, r) = g1 (θ0, l, r), for some θ1 ∈ Θ , then by Lemma 3.2, h (t, θ1) = h (t, θ0) a.s. (ν)

which immediately implies that θ1 = θ0.

Theorem 3.1. If the identifiability condition

p (θ0) = Pθ0 {A ∈ (L, R)} < 1

is satisfied, then θ̂n → θ0 a.s.
(
Pθ0
)
.

Proof. First, note that from Lemma 3.3, it follows that g (θ) ≤ g (θ0) for all θ ∈ Θ with equality
holding only when θ = θ0. Also note that under the identifiability condition g (µ, κ) goes to −∞
as κ → ∞. Let Ω0 be a set of Pθ0 measure 1 where

1
n ln (θ) → g (θ). The discussion below is for an

arbitrary point ω ∈ Ω . If θ̂n 9 θ0, then there is a subsequence nk through which θ̂ → θ1 = (µ1, κ1)
where κ1 ∈ [0,∞].
If κ1 < ∞, then 1

nk
lnk
(̂
θnk

)
→ g (θ1). But 1nk lnk

(̂
θnk

)
≥

1
nk
lnk (θ0) → g (θ0) and it follows that

g (θ1) ≥ g (θ0) contradicting Lemma 3.3.
If κ1 = ∞, then limk→∞ 1

nk
lnk
(̂
θnk

)
= limκ→∞g (µ1, κ) = −∞. As earlier, 1nk lnk

(̂
θnk

)
≥

1
nk
lnk (θ0)→ g (θ0) leading to a contradiction.

Theorem 3.2. Assume that the conditions of Theorem 3.1 hold. Let Σ1 (θ) be the dispersion of X′1 (θ) =(
∂X1(θ)
∂µ

,
∂X1(θ)
∂κ

)
where X1 (θ) is as in (3.5) and let Σ (θ) =

[
g ′′ (θ)

]−1
Σ1 (θ)

[
g ′′ (θ)

]−1. Then
√
n
(̂
θn − θ0

)
⇒ N2 (0,Σ (θ0)).

Proof. Let

l′n (θ) =
(
∂ ln
∂µ
,
∂ ln
∂κ

)
and

l′′n (θ) =


∂2ln
∂µ2

∂2ln
∂κ∂µ

∂2ln
∂κ∂µ

∂2ln
∂κ2

 .
By applying the standard multivariate Taylor expansion (see (8.19), Vol 2 of Apostol [5]), we get

l′n
(̂
θn

)
= l′n (θ0)+

(̂
θn − θ0

)
l′′n (θ0)+ ‖̂θn − θ0‖E

(̂
θn, θ0

)
where the function E is such that limx→yE (x, y) = 0. As θ̂n is themaximizer of the likelihood function,
l′n
(̂
θn

)
= 0. From this it follows that(̂
θn − θ0

)
l′′n (θ0) = −l

′

n (θ0)− ‖̂θn − θ0‖E
(̂
θn, θ0

)
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and hence

√
n
(̂
θn − θ0

)
=
−l′n (θ0)
√
n

[
l′′n (θ0)
n

]−1
−
1
√
n
‖̂θn − θ0‖E

(̂
θn, θ0

) [ l′′n (θ0)
n

]−1
. (3.6)

By the strong law of large numbers, l
′′
n(θ0)
n converges to a constant matrix given by Eθ0

[
X ′′1 (θ0)

]
=

g ′′ (θ0). By Theorem 3.1, 1√n ‖̂θn−θ0‖E
(̂
θn, θ0

)
goes to zero a.s., and hence so does the second term on

the RHS of (3.6). As a consequence of the standard multivariate central limit theorem for i.i.d. random
variables, l

′
n(θ0)√
n goes to a multivariate normal distribution with mean zero and dispersionΣ1 and the

desired result follows.

4. Nonparametric estimation for censored circular data

4.1. Self-consistent estimator

Let Ai, i = 1, . . . , n, be a sequence of independent identically distributed (i.i.d.) circular
random variables with an unknown distribution F0. Let (Li, Ri) be a sequence of i.i.d. random
vectors, independent of A′is and both components taking values in [0, 2π), with unknown bivariate
distribution.While A denotes the variable of interest, (Li, Ri) represents the censoringmechanism.We
observe Ai when Ai 6∈ (Li, Ri) and the censoring arc (Li, Ri)when Ai ∈ (Li, Ri) i.e. we either observe the
original value Ai if there is no censoring or the censoring arc (Li, Ri)when there is censoring.
Note 1: We assume that Ai, Li as well as Ri take values in the interval [0, 2π). Since there is no

natural ordering on the circle, an Ri may have a smaller value than the corresponding Li, as when the
censoring interval straddles the zero direction. To cover this situation when r < l, we say an angle α
belongs to the arc (l, r) if either r < l < α or α < r < l. In the more standard situation when l < r ,
it is clear that an angle α belongs to an arc (l, r) if l < α < r . With this definition, for instance the
observed angular values of 10 or 356 still fall inside the censoring arc which goes from 355 to 18.
Note 2: Any distribution function on the circle is first defined on [0, 2π) and then extended to the

rest of the real line by the relationship F(x+ 2π) = 1+ F(x) for all x ∈ R.
In many censoring situations, if we were to try to estimate the distribution function via the EM

algorithm, the result is that of equating F with the conditional expectation under F of the empirical
distribution function given the data. The resulting equation in our case takes the form

F (t) = EF [(En) (t) |Ai, (Li,Ri)]

where En is the empirical distribution function. This equation was referred to as self-consistency
equation by Efron [6]. In the case of censored circular data, the SCE F̂ satisfies the equation

F(t) =
1
n

n∑
i=1

{
δiI(Ai ≤ t)+ δ̄iI(Ri ≤ t)+ δ̄iI[t ∈ (Li, Ri)]

F(t)− F(Li)
F(Ri−)− F(Li)

}
(4.7)

where δi = I[Ai 6∈ (Li, Ri)] and δ̄i = 1 − δi. As is the case with many types of censored data, there is
no explicit closed form solution to the equation and has to be computed by the iterative formula

F̂ (m+1) (t) =
1
n

n∑
i=1

{
δiI(Ai ≤ t)+ δ̄iI(Ri ≤ t)+ δ̄iI[t ∈ (Li, Ri)]

F̂ (m) (t)− F̂ (m) (Li)

F̂ (m) (Ri−)− F̂ (m) (Li)

}
.

The convergence of the algorithm is assured by Theorem 2.1 of Tsai and Crowley [7] provided
that the initial estimator gives positive mass to all observed points. For a general discussion on self-
consistency and its relation to EM algorithm, see Tarpey and Flury [8].
In order to avoid the confusion that stems from having to deal with an arbitrary starting point

when we talk about distribution functions on the circle, we convert our self-consistency equation to
the probability mass function form. (We refer to a censoring interval as ‘‘empty’’ if it contains no other
uncensored observations.) Before doing this, we need the following
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Proposition 4.1. Any distribution function that satisfies (4.10) attaches all its mass on the uncensored
observations and empty censoring intervals. If empty intervals are replaced by arbitrary points in them,
any SCE for the new system will also be an SCE for the old system. Consequently, if each observed censored
interval (Li, Ri) contains at least one uncensored observation Xj, j 6= i, then any distribution function that
satisfies (4.10) attaches all its mass on these uncensored observations.

Proof is similar to the proof of Proposition 1 in Jammalamadaka and Mangalam [9].
In the light of the above proposition, we may replace all the empty intervals by their midpoints

and treat them as uncensored observations. Now all mass of any SCE will be concentrated on these
points. Let these points be denoted by x1, x2, . . . , xm and let p1, p2, . . . , pm be the mass attached to
them by the SCE. From the self-consistency equation it follows that

pj =
1
n
+
pj
n

n∑
i=1

 (1− δi)I[xj ∈ (Li, Ri)]∑
{k:xk∈(Li,Ri)}

pk

 . (4.8)

This can also be rewritten as

1/pj = n−
n∑
i=1

 (1− δi)I[xj ∈ (Li, Ri)]∑
{k:xk∈(Li,Ri)}

pk

 . (4.9)

Now we find the self-consistent estimator by iterating this equation.
If it so happens that a censored arc contains nouncensored observation,we are in a situation similar

to that of right-censored data where the largest observation is censored. While in the right-censored
case the extra mass is usually left unassigned, for censored circular data there is a natural way of
handling this. When a censored arc contains no uncensored points, we let the mass that corresponds
to that arc be assigned to itsmidpoint. Thus our initial estimatormay give equalmass to all uncensored
observations and to the midpoints of the censoring arcs that contain no uncensored observations. But
convergence of the iteration would be faster if no mass is assigned to the midpoints of non-empty
intervals.

Remark. In the light of above discussion, it would be sub-optimal (does not lead to maximization of
the likelihood) to simply replace each censored observation by the midpoint of the censoring interval
irrespective of whether it contains any other points, although this could be lead to a crude and simple
estimate.

4.2. Nonparametric maximum likelihood estimation

The SCE, being a result of convergence of the EM algorithm, provides a local maximum of the
likelihood equation [see, for example, Ref. [10]] and may not coincide with the NPMLE. Trivial
examples of cases when an SCE is not the NPMLE can be constructed by considering situations where
two empty censoring intervals overlap. For instance, if we have 1, 2, (3, 4), (3.8, 5) as the data, we
could assign 0.25 mass to 1, 2, 3.5 and 4.4 to get an SCE. The NPMLE will assign 0.25 each on 1 and 2,
but assign 0.5 on some point, say 3.9, on the overlap area (3.8, 4). Both estimators are self-consistent,
but the latter has higher likelihood. This happens whenever there are empty, overlapping intervals.
Let F denote the set of all distribution functions on the line. For F ∈ F the likelihood of the sample
is given by

L(F) =
n∏
i=1

[F(Xi)− F(Xi−)]δi [F(Ri−)− F(Li)]1−δi .

The distribution that maximizes the likelihood function is the Nonparametric Maximum Likelihood
Estimator (NPMLE). Interestingly, the maximizer of the Nonparametric likelihood function will
automatically be a self-consistent estimator.
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Table 1
Simulation results for θ̂ when κ = 1.

Length of censoring arc Estimation of µ Estimation of κ
Average Mean direction
µ̂ µ̃ µ̂ µ̃ κ̂ κ̃

1 1.98504 1.98512 1.98522 1.9853 1.04659 1.0464
3 2.00533 2.0033 2.00561 2.00331 1.03721 1.03091

Table 2
Simulation results for θ̂ when κ = 3.

Length of censoring arc Estimation of µ Estimation of κ
Average Mean direction
µ̂ µ̃ µ̂ µ̃ κ̂ κ̃

1 1.99318 1.99461 1.99318 1.99461 3.10974 3.10108
3 2.0081 2.00651 2.0081 2.0065 3.08278 3.07627

Theorem 4.1. The NPMLE satisfies the equation

F(t) =
1
n

n∑
i=1

{
δiI(Xi ≤ t)+ δ̄iI(Ri ≤ t)+ δ̄iI[t ∈ (Li, Ri)]

F(t)− F(Li)
F(Ri−)− F(Li)

}
. (4.10)

For proof see Theorem 1 in Jammalamadaka and Mangalam [9].
Consider the following example with n = 5 where the data set is {0.2, 0.4, 0.6, (0.1, 0.5),

(0.3, 0.7)}. Let p1, p2, p3 be the masses to be assigned to 0.2, 0.4, 0.6 respectively. The likelihood
function is given by

p1 · p2 · p3 · (p1 + p2) · (p2 + p3)

and, as pi’s add up to 1 and the roles of p1 and p3 are interchangeable, we can simplify the problem to
that of maximizing (x2)(1−2x)(1−x)2 with p1 = p3 = x and p2 = 1−2x. The solution, then, is given
by x = (5−

√
5)/10 so that p1 = p3 = (5−

√
5)/10 and p2 = 1/

√
5 is the solution to the NPMLE. In

this example the iterations of the self-consistency equation rapidly converged to the NPMLE.
From Theorem 3.1 and from Proposition 4.1, it follows that the NPMLE will put all its mass on

uncensored observations and censored intervals that are empty. But if we replace empty intervals by
points in them, say by their midpoints, the resulting system may have a different NPMLE.

4.3. Data simulation

Extensive simulation studies were conducted to check the performance of the estimators of the
mean direction µ and the concentration parameter κ . In all cases, the data were generated from
vM(2, κ) and the censoring was done by arcs of fixed length whose starting points were generated
from a uniform distribution over the circle. Simulations were done for various combinations of κ and
a, the length of the censoring arc. We did not vary the values of µ because of its location invariance
property. For each combination of the choice of a and κ , we generated 200 samples of size 100 each
and computed the value of the estimators. Average and the mean direction for the 200 values of the
MLE of µ were computed along with the average for the MLE of κ . (With the choice of µ = 2, all
the estimators obtained were between 0 and π and there were no straddling zero, so computing the
average valuemade sense.) For comparison, the corresponding values for θ̃, the uncensored estimator
are given. The results, given in Tables 1 and 2, are quite favorable and the estimators performed well
even under strong censorship.
For censoring of this sort, there is a natural competitor for the MLE of µ. One may replace all the

censoring arc by its midpoint, treat them as part of the uncensored data and compute the estimates of
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Table 3
Comparison between MLE and MME for µwhen κ = 0.1.

Length of censoring arc Average deviation Maximum deviation
MLE MME µ̃ MLE MME µ̃

1 1.08785 1.09174 1.07432 3.10065 3.10629 3.13887
3 1.13732 1.16591 1.02863 3.0934 3.14097 3.00418

Table 4
Comparison between MLE and MME for µwhen κ = 1.

Length of censoring arc Average deviation Maximum deviation
MLE MME µ̃ MLE MME µ̃

1 0.118486 0.118316 0.11699 0.47819 0.481383 0.468343
3 0.147316 0.147739 0.110262 0.567545 0.534483 0.40235

Table 5
Comparison between MLE and MME for µwhen κ = 4.

Length of censoring arc Average deviation Maximum deviation
MLE MME µ̃ MLE MME µ̃

1 0.0411071 0.0414139 0.0388204 0.156435 0.155863 0.1573
3 0.0506923 0.0658454 0.040262 0.182545 0.252105 0.162144

the parameters from this data set in the usual way.We investigated the performance of this estimator
that we call the MME, the method of midpoints estimator and found that the MLE does better, though
only slightly when the censoring is mild. As censoring gets stronger, the MLE does significantly better
than the MME. Tables 3–5 give the average and maximum deviations from the true value of µ for
these estimators for various values of κ . It also gives these for the uncensored estimator µ̃, calculated
before censoring is applied. All generated data come from vM(0, κ), where κ takes values 0.1, 1 and
4. m = 200 samples of size n = 100 were taken and each sample is censored by arcs of uniformly
distributed starting points and fixed length a. For each of these samples, MLE, MME and µ̃ were
computed and the average and maximum deviations of these estimators from 0 were calculated. For
all theses cases, estimation of µ is done with the assumption that κ is known. The lengths of the
censoring arcs were taken to be 1 and 3.
We also looked into the situation where data from vonMises distributionwere censored by a fixed

arc of length a for various starting points on the circle. The essential difference here from the previous
study is that here the censoring arc is the same for all observations. We took a sample of size 10 000
observations from vM(2, 0.5) and censored it with fixed intervals of length 2, spanning the circle. The
average deviation and maximum deviation from µ were computed. The average deviations for MLE
and MME were 0.03887 and 0.14750 respectively while the maximum deviations for MLE and MME
were 0.08949 and 0.34939 respectively. This shows that the MLE is startlingly efficient compared to
the MME.
Even though our simulations assumed that κ was known when the estimate of µ was computed,

this turns out to be not a critical issue. When κ is unknown, one may use any reasonable value k in
its place for the purpose of estimating µ. In our algorithm, varying the value of k had very little effect
on the estimated value of µ. This means that in the cases where µ is all that we are interested in and
κ is an unknown nuisance parameter, we can take a moderate value k, say k = 1, in place of true κ
and the results for µ are not seriously affected. This robustness with respect to κ was demonstrated
in various simulations which are not reproduced here.
Nonparametric estimation of θ̂ also gave us good results, though, as expected, not as good as the

parametric estimation. We conclude from this that if we know that the data come from von Mises
distribution, then it is better to use the parametric method.
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